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Abstract 

Traditional color appearance models are capable of 
predicting the appearance of spatially simple color stimuli 
under a wide variety of viewing conditions and have 
typically been applied to images by treating each pixel as 
an independent stimulus. Current research has led to the 
development of a new image color appearance model and a 
modular framework for image difference metrics, known as 
iCAM, that combines attributes of traditional color 
appearance models with attributes of spatial vision models 
to predict the appearance of spatially complex stimuli 
within complex viewing environments. The model output 
is a spatial map of various appearance attributes such as 
lightness, brightness, colorfulness, chroma, saturation, and 
hue. With such correlates for two images it is possible to 
construct image-difference maps along each of these 
perceptual dimensions. From the image-difference maps, 
summary image-difference statistics can be computed 
(analogous to an average CIELAB ∆Eab* across the pixels 
in an image). Such summary statistics are candidates for 
various types of image quality metrics. The advantage of 
computing differences on the output maps of an image 
appearance model is that the spatial filtering properties of 
the human visual system have been accounted for and any 
imperceptible differences are not represented in the image 
appearance maps. This paper presents an analysis of 
various summary statistics applied to iCAM image-
difference maps for the interpretation of visual scaling 
results from a psychophysical data set. The data set 
includes analyses of complex imagery for color-preference 
reproduction. The results of the analysis conclude that the 
modular framework of iCAM, scales evenly across the 
separate image-difference maps, and behaves, as one 
would expect for the adjustment dimension manipulated in 
the psychophysical data set tested. 

Introduction 

Image quality models can be separated into two groups: 
Device-dependent and Device-independent. Device 
Dependent modeling relies on knowledge of imaging 
system parameters and correlates them with human 
perception generally through the use of psychophysical 
experiments to determine image quality. Unfortunately, the 

relationships developed are only good for the specific 
system tested and if the system is modified then the 
relationships need to be recalculated.1 

Device-independent image quality models utilize 
information within the images themselves to understand 
image quality and perceivable differences. This paper 
adopts a modular framework of iCAM to better understand 
image appearance modeling. Figure 1 presents this 
framework, which has been described by Fairchild and 
Johnson.1-3 Furthermore a description of the model along 
with example images and source code can be found at 
www.cis.rit.edu/mcsl/iCAM.  

 
 
 

 

Figure 1. Flow chart of the iCAM image appearance model. 3 

IS&T's 2003 PICS Conference

108



 

 

This framework has many applications including 
image rendering and digital video rendering, but for the 
purpose of this paper we will focus on the iCAM’s 
difference perceptibility capabilities to understand image 
quality. The difference perceptibility workflow we are 
utilizing in this analysis is presented in Figure 2.  

 

 

Figure 2. Implementation of iCAM for image difference and 
image quality metrics.3 

 
To summarize Figures 1 and 2, the model requires 

colorimetrically characterized image data from a reference 
image and the reproduction. Both the images are processed 
to account for chromatic adaptation, and then converted to 
RGB signals (cone signals), which are then transformed 
into opponent signals, where spatial filtering is applied. 
Then a nonlinear compressive function is applied along 
with a transform into IPT space where we can perform 
statistics to understand image perceptibility describing the 
image differences.3,4  

Psychophysical Database 

The goal of this research is to better understand the 
capabilities and considerations needed to utilize iCAM to 
evaluate difference in images manipulated along 
colorimetric dimensions. The psychophysical data set 
utilized in this analysis, described by Fernandez and 
Fairchild, evaluates color-preference reproduction along 
colorimetric dimensions.5  

Image Characteristic Ranked Order Experiment  
This psychophysical experiment was a rank order 

design, in which observers were presented sets of 
manipulated images with the task to order the images from 
most preferred to least preferred. Each set of images 
represented a ramp of a single global colorimetric 
manipulation applied to all the images in Figure 3. 

To create the sets of manipulated images, the images 
were adjusted along eight different CIELAB dimensions. 
The colorimetric dimensions chosen were a logical 
extension of experience from adjusting manipulating 

images, and later correlated to the analysis of previous 
research. Four of the dimensions affected color balance 
(additive shifts of a* and b*); the other four manipulations 
were lightness (a gamma adjustment of L*), contrast (a 
sigmoid adjustment to L*, with an threshold at 50.0 L*), 
Chroma (multiplicative adjustment to Cab* at a constant 
hab), and Hue rotation (hab rotation at a constant Cab*). The 
direct and indirect dimensions of adjustment are two of the 
color balance dimensions that manipulated the image along 
the 45° axes of the a* and b* coordinate system.  
 

   

  

 

 

 
 

  

Figure 3. Image set for Experiment– (From left to right, top to 
bottom) 1. Model, 2. Koala, 3. Clown, 4. Indoor Scene, 5. 
Horses, 6. Church, 7. Dinner, 8. Mountains, 9. Art-fair, 10. 
Bearded Man 11. Harmony  

 
The eight manipulations were applied to the eleven 

images to generate eighty-eight sheets of randomly ordered 
six-image sheets that varied around the nominal image. 
Each sheet demonstrated the effect of a single adjustment 
applied globally, and consisted of three steps above and 
below the original image. The increments were clearly 
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Starting Value   E nding Value      Increment
Gamma  adjustment 0.55 1.30 0.15

Sigmo idal adjustment 0.55 1.55 0.20
Chroma  adjustment 0.75 1.30 0.11

Hue Angle adjustment - 0 .0 7 0 .1 1 0 .0 3 5
a* ad justment -7.50 7.50 3.00
b*  adjustment -7.50 7.50 3.00

Direct adjustment -7.50 7.50 3.00
-7.50 7.50 3.00

Indirect  adjustment -7.50 7.50 3.00
7.50 -7.50 -3.00

perceivable, but not objectionably large as to describe the 
variability in preference of good images. The increments 
used to generate the image sets are in Table 1. 

Table 1. Adjustment Ranges and Increment Values for 
Experiment 

 
The sheets were printed on a Fujix Pictrography 3000, 

at a resolution of 300 dots per inch. The printing system 
was characterized using a 10 x 10 x 10 LUT, and a 
tetrahedral interpolation technique. The printer’s forward 
characterization was utilized to convert the RGB images 
into CIELAB space, were all manipulations where applied 
and then the inverse characterization was utilized to 
convert the CIELAB images back to RGB. This workflow 
minimized gamut issues. A pictorial representation of a 
print sheet from the experiment is presented in Figure 4. 
This sheet represents an example of an adjustment of 
lightness. In addition to the placement of the manipulated 
image sets being randomized within each sheet, the order 
of image and applied manipulations were randomized 
throughout the entire book of image sets. 

 
 
 

 

 

Figure 4. Sample sheet of image set from the psychophysical 
experiment 

 The experimental analysis, performed using 
Thurstone’s Law of Comparative Judgment, resulted in 
magnitude scales along each colorimetric dimension. The 
results of the experiment are based on 77 observers each 
making 88 observations. The observer population consisted 
mostly of student, staff, and faculty of Imaging 
Laboratories. The breakdown of the population is 17 
women, 60 men from the age range of 17 – 44. 

Analysis and Discussion 

Analysis I – Understanding the Image-map Metrics  
The first exercise in this evaluation is one of an 

academic nature; the goal was to get acquainted with using 
the iCAM framework and metrics used to calculate image 
differences. The results of this analysis are presented in 
Tables 2-5. This evaluation calculates, for each image in 
Figure 3, the difference from image to black, image to 
white, and image to inverse image. The black image is 
simply the tristimulus value 0 for all pixels; the white 
image equated to the white point of D50 for all pixels, and 
the inverse image was the image minus the white point of 
D50 multiplied by -1.0. These calculations provided insight 
into the range of values one should expect resulting from 
the model. 

 
 

Table 2. Analysis I - ∆ΙΡΤ 

 

Table 3. Analysis I - ∆Ι 

 

Table 4. Analysis I - ∆Ρ 

 

Table 5. Analysis I - ∆Τ 

 
 

Mean StDev Max P50 P95 P99
∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ

Img vs. Black 1.47 0.19 1.99 1.46 1.79 1.87
Img vs. White 0.60 0.18 1.36 0.59 0.89 0.92

Img vs. Inv. 0.57 0.20 1.41 0.57 0.89 0.93

Mean StDev Max P50 P95 P99
∆Ι ∆Ι ∆Ι ∆Ι ∆Ι ∆Ι

Img vs. Black 1.45 0.19 1.93 1.45 1.78 1.86
Img vs. White 0.52 0.19 1.10 0.52 0.81 0.84

Img vs. Inv. 0.45 0.23 1.12 0.51 0.81 0.84

Mean StDev Max P50 P95 P99
∆Ρ ∆Ρ ∆Ρ ∆Ρ ∆Ρ ∆Ρ

Img vs. Black 0.09 0.08 0.87 0.06 0.21 0.28
Img vs. White 0.12 0.06 0.78 0.09 0.22 0.26

Img vs. Inv. 0.15 0.10 0.85 0.10 0.33 0.44

Mean StDev Max P50 P95 P99
∆Τ ∆Τ ∆Τ ∆Τ ∆Τ ∆Τ

Img vs. Black 0.12 0.09 0.95 0.09 0.26 0.36
Img vs. White 0.24 0.10 0.75 0.24 0.39 0.43

Img vs. Inv. 0.24 0.10 0.75 0.24 0.39 0.43
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Mean StDev MIN P50 P95 P99 MAX
∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ

Mean 0.04 0.02 0.01 0.04 0.05 0.08 0.55
StDev 0.03 0.02 0.02 0.03 0.04 0.09 0.43

MAX 0.16 0.09 0.11 0.20 0.26 0.55 2.11

Mean StDev P50 P95 P99 MAX
∆Ι ∆Ι ∆Ι ∆Ι ∆Ι ∆Ι 

Mean 0.011 0.004 0.010 0.016 0.019 0.075
StDEV 0.019 0.007 0.018 0.027 0.031 0.093

MAX 0.104 0.042 0.104 0.147 0.154 0.513

Mean StDev P50 P95 P99 MAX
∆Ρ ∆Ρ ∆Ρ ∆Ρ ∆Ρ ∆Ρ

Mean 0.021 0.009 0.018 0.031 0.041 0.491
StDEV 0.025 0.010 0.024 0.033 0.041 0.428

MAX 0.123 0.087 0.127 0.231 0.238 2.093

Mean StDev P50 P95 P99 MAX
∆Τ ∆Τ ∆Τ ∆Τ ∆Τ ∆Τ

Mean 0.021 0.013 0.021 0.031 0.060 0.321
StDEV 0.023 0.013 0.027 0.031 0.083 0.237

MAX 0.106 0.071 0.181 0.156 0.491 1.023

The results in the tables above are averages across the 
entire set of images. Furthermore the image statistics are 
based on the absolute value of each image difference map, 
this step hides the direction of the difference but provides 
an accurate representation of the magnitude of the 
differences, which is important particularly for the 
percentile evaluations. 

The selection of the statistics utilized here was to 
demonstrate how they behave and provide examples of 
when they might be used. The P50, P95, and P99 percentile 
evaluations returns the value at which that corresponding 
percentage of differences would fall below that value, 
meaning that for P50, 50% of the values are below the 
value indicated. P50 is most easily interpreted as the 
median value of a data set. We included P95, P99, and 
Max as a demonstration that this model could be used to 
determine tolerances verses the analysis of mean, which 
yields a magnitude scalar value which would not work as 
well if you were trying to optimize a system to minimize 
variability. The reason the analysis was repeated on the 
individuals’ image difference maps was to understand how 
the components behave in relation to the overall 
differences computed. 

To understand the tables above the ∆ΙΡΤ analysis is 
simply a Euclidean combination of the ∆Ι,  ∆Ρ, 
and ∆Τ image difference maps produced by two images in 
the IPT opponent space, as seen in Equatation 1. In IPT 
opponent space I represents light-dark opponents, P 
represents red-green opponents, and T represents yellow-
blue opponents. 

 
  

(1) 

The interesting note about the results of this exercise is 
that the layers behave how one would expect. The 
differences between these images are obviously lightness 
differences, and the calculated difference was primarily 
accounted for by the ∆Ι image difference map. 
Furthermore, all of the layers appear to behave on similar 
scales, with similar magnitudes for mean and variability. 
This is because of a weighting factor described by Ebner 
and Fairchild.4 The P and T layers are multiplied by a 
factor of 1.5 to achieve similar values as the ∆I image 
difference map. Typically, I values range from 0 to 1 and 
the P and T layers have values that range from –1.5 to 1.5.  

Analysis II – iCAM Image Metrics Applied to Data Set 
This exercise repeated the above analysis on the 

psychophysical data outlined in the Psychophysical 
Database section. This analysis was completed without 
segmenting the data by image content or by adjustment 
dimension. The results are presented in Tables 6-9.  

Each table represents the results of the specified 
statistical summary for 528 image pairs. So for each group 
of six images set, for example see Figure 4, the reference 
image was selected, which for this analysis the most 
preferred image of the set, and then the difference for the 

reference image and each image in the entire set were 
calculated. From the differences return from iCAM the 
summary statistics were then applied. 

The analysis demonstrates that the P and T layers are 
more variable. The probable reason for the increase in 
variability is that the data set includes six colorimetric 
manipulation dimensions that directly affect the P and T 
layers, and only two of the adjustments dimension that 
have localized affects on the Ι layer of the IPT color space. 
Furthermore, this demonstrates that the maximum Max 
value for the ∆Ι and ∆Τ images difference maps is very 
high considering the previous exercise. Fortunately, using 
the values from the P99 calculation yields that these spike 
values are most likely only one noisy pixel out of the 528 
image difference calculations that this data analysis is 
based on. This noisy pixel could be the result of an image 
artifact as a result of possible clipping, or round-off error. 
Other than the discussed abnormal responses the results of 
the calculations appear to be normal and consistent with 
ones intuition of the model, in that the each of the 
summary statistics are similarly scaled and evenly 
contribute to the overall difference computation.  
 
 
 

Table 6. Summary Statistics for ∆ΙΡΤ Calculation 
 

Table 7. Summary Statistics for ∆Ι Difference Image 
 

Table 8. Summary Statistics for ∆Ρ Difference Image 
 

Table 9. Summary Statistics for ∆Τ Difference Image 
 

2 2 2IPT I P T∆ = ∆ +∆ +∆
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Analysis III – iCAM Image Metric Applied to the 
Segmented Data Set and Correlated with Preference 
Analysis 

To introduce this next analysis, Figures 5, 6, and Table 
10 have been generated to visually represent what is being 
discussed in Figures 7 and 8, and Tables 11 – 14. So for 
each ramp of a manipulation dimension/image combination 
the most preferred image was chosen as the reference 
image and the difference between the reference and each 
image in the ramp was calculated. In Figure 5, Image D 
was the most preferred image. Table 10 presents the actual 
results of the analysis, and Figure 6 is a plot of the data in 
Table 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sample Ramp- Gamma Adjustment 

Table 10. Corresponding Mean ∆ΙΡΤ and Preference 
Data for Figure 5 

 
 
 
The final analysis segments the second analysis into 

the component adjustment dimensions tested in the 
psychophysical experiment, and then correlates the ∆ΙΡΤ 
computations to the preference results of the experiment. 
The results are presented in Figures 7 and 8.  

 The graphs in Figures 7 and 8 represent average mean 
∆ΙΡΤ verse mean preference for the individual adjustment 
dimensions. Each point on the plot represents the center of 
mass of eleven mean ∆ΙΡΤ and correlated preference 
results, this would equate to averaging eleven of Figure 5. 
Since Figures 7 & 8 are averaged across an image set, one 
would expect to get a linear relationship for each 
adjustment dimension, meaning a relationship independent 
of image content or system. Theoretically, we could now 
use image difference and generate the preference 

difference without doing more psychophysics, thus being a 
device-independent image quality scale. So the slope of the 
line for a given dimension is now an image quality scale, 
furthermore the straighter the line the more defined the 
relationship is between the image dimension and 
preferences. 

 
 

 
Figure 6. ∆ΙΡΤ verses Preference for Figure 5. 

 

 

Figure 7. ∆ΙΡΤ verses Preference for a*b* Dimensions 

 

Figure 8. ∆ΙΡΤ verses Preference for non- a*b* Dimensions 

Step A B C D E F
 MEAN ∆ΙΡΤ 0.11 0.06 0.03 0.00 0.02 0.04
Preference 1.67 0.70 0.06 0.00 0.53 0.98
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Adjustment Mean StDev Max
Dimension ∆ΙΡΤ ∆ΙΡΤ ∆ΙΡΤ

Gamma 0.043 0.032 0.120
Sigmoid 0.037 0.024 0.079
Chroma 0.029 0.025 0.113

Hue 0.009 0.008 0.044
a* 0.042 0.030 0.109
b* 0.039 0.027 0.103

Direct 0.062 0.043 0.163
Indirect 0.048 0.033 0.127

Adjustment Mean StDev Max
Dimension ∆Ι ∆Ι ∆Ι

Gamma 0.037 0.028 0.104
Sigmoid 0.034 0.022 0.078
Chroma 0.002 0.002 0.011

Hue 0.001 0.001 0.003
a* 0.001 0.001 0.005
b* 0.005 0.004 0.018

Direct 0.004 0.003 0.012
Indirect 0.005 0.004 0.020

Adjustment Mean StDev Max
Dimension ∆Τ ∆Τ ∆Τ

Gamma 0.017 0.012 0.049
Sigmoid 0.009 0.006 0.026
Chroma 0.019 0.017 0.077

Hue 0.005 0.004 0.025
a* 0.003 0.002 0.008
b* 0.038 0.026 0.099

Direct 0.041 0.028 0.106
Indirect 0.034 0.024 0.092

Adjustment Mean StDev Max
Dimension ∆Ρ ∆Ρ ∆Ρ

Gamma 0.008 0.008 0.039
Sigmoid 0.005 0.004 0.015
Chroma 0.018 0.018 0.093

Hue 0.007 0.006 0.035
a* 0.041 0.029 0.109
b* 0.008 0.006 0.027

Direct 0.046 0.032 0.123
Indirect 0.032 0.022 0.085

It is interesting to note that in Figure 8 Hue Angle 
Rotation manipulation separates it’s self from the other 
dimensions. This is indeed representative of the experiment 
in that the discernability of this dimension was 
significantly more difficult than the other seven, and it is 
encouraging to see that the model also concluded that the 
calculated image difference is very small in comparison to 
the other dimensions. Furthermore, the Direct and Indirect 
dimension were a Euclidean distances of a*b* adjustments 
which were visually larger and were calculated to have the 
largest image differences. These plots are very 
representative of the order of discernability between 
adjustment dimensions, and for the most part support our 
goal in the psychophysical design phase of generating 
scales that were visually uniform across dimensions 
without being largely objectionable. 

To further this analysis some of the prior mentioned 
summary statistics were calculated for each of the image 
difference maps in order to better understand how the 
individual layer behaved when segmented by adjustment 
dimension. These results are presented in Tables 11– 14. 

Table 11. Mean of ∆ΙΡΤ Image for Each 
Dimension 
 

Table 12. Mean of ∆Ι Image for Each Dimension 
 

Table 13. Mean of ∆Ρ Image for Each Dimension 

 

Table 14. Mean of ∆Τ Image for Each Dimension 
 

This final analysis reveals that the iCAM framework 
for calculating image differences behaves, as one would 
expect. Each adjustment dimension yields max difference 
in their corresponding difference layer. For example, both 
Sigmoid and Gamma demonstrate a majority of their 
difference and variability in the ∆Ι image difference map, 
the a* manipulation corresponds well to the ∆Ρ image 
difference map, and the b* manipulation corresponds well 
to the ∆Τ image difference map. The one interesting 
observation is that the IPT space appears to be slightly 
more sensitive along the a* dimension, and significantly 
more sensitive along the Direct dimension in comparison 
to the results of the Indirect dimension. These two non-
linear sensitivity issue are probably a function of the color 
space chosen. If these discrepancies are inherent to the 
color-space then weighting factors could be used to correct 
the metric, which is analogous of what has been applied to 
the ∆E*94 in comparison to it’s predecessor ∆E*ab. 

6 

Conclusion 

The next generation of appearance models, iCAM, has 
been proposed as a modular framework to accurately 
represent images across many different viewing conditions. 
This paper has been an exercise to evaluate iCAM’s 
capability to serve as an image perceptibility model along 
colorimetric manipulation dimensions. In the process 
several statistical calculation were applied to both the 
individual layer of the ∆ΙΡΤ image as well as the ∆ΙΡΤ 
components. This analysis has yielded that this image 
appearance model behaves, as one would expect for the 
adjustment dimension manipulated in this psychophysical 
data set. It also yields results on a reasonably uniform scale 
that agreed with both preference data and visual 
observations.  
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